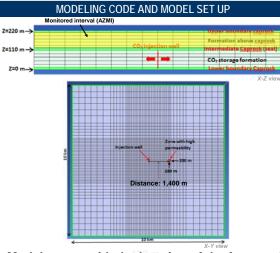
Numerical simulation of pressure and CO_2 saturation above an imperfect seal as a result of CO_2 injection: implications for CO_2 migration detection

Liwei Zhang^a and Robert Dilmore^b

^a ORISE, National Energy Technology Laboratory, 626 Cochrans Mill Road, Pittsburgh, PA 15236 ^b Office of Research and Development, National Energy Technology Laboratory, 626 Cochrans Mill Road, Pittsburgh, PA 15236

ABSTRACT

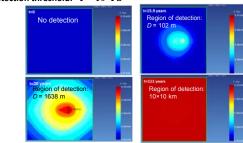

A numerical model was developed with funding support from National Risk Assessment Partnership (NRAP), U.S. DOE to simulate pressure and CO₂ saturation evolution in a porous and permeable interval (AZMI) overlying an imperfect primary seal of a geologic CO₂ storage formation. The seal imperfection is modeled as a single higher permeability zone in the otherwise low permeability seal, with the center of that zone 1,400 m away from the CO₂ injection well. The simulation showed a circular region of pressure increase of greater than 0.1 MPa (approximately 3 km in diameter) surrounding the high permeability zone at the bottom of the AZMI after 30 years of active CO₂ injection. The diameter of the corresponding CO₂ plume above the seal was about 1 km at the bottom of the AZMI after 30 years of active CO₂ injection. Modeling results suggest that the pressure response from fluid migration allows early detection. The natural logarithm of the amount of CO_2 migration through the high permeability zone can be linearly correlated with an author-defined index named "CO₂ migration index", which can be used to quickly evaluate the amount of CO₂ migration from the primary containment to the overlying formation for different CO₂ storage systems.

BACKGROUND

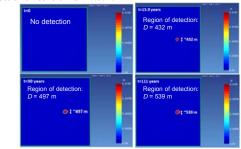
- Deep saline aquifers have the highest CO₂ storage capacity of all candidate geologic storage targets -~1,738 Gigatonnes of CO₂ in North America alone (The North American Carbon Storage Atlas, 2012).
- CO₂ leakage through caprock may be detected by monitoring pressure and CO₂ saturation response in porous and permeable zones above that caprock.
- This study employs TOUGH2 to simulate CO_2 and brine leakage through fractured caprock. The goal of this study is to answer the following questions: 1) how fast a CO_2 leakage can be detected at the above zone monitoring interval (AZMI) above a fractured caprock; 2) how the permeability change of the fractured caprock affects the amount of leaking CO_2 and the time required to detect the leakage.

MODELING CODE AND MODEL SET UP

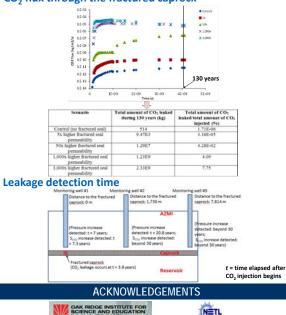
- Modeling code: TOUGH2
- Model set up: 3-D model with 37,908 active grid blocks
- Eqn-of-state: ECO2N (water, CO₂ and NaCl)
- Isothermal simulation with no heat exchange considered


Model set-up with the location of the fractured caprock (high-permeability zone in red)

Modeling parameters


Parameter	Value	Parameter	Value
Density of rock in Layers	2600 kg/m ³	CO ₂ injection rate	31.7 kg/s
1-5		(constant rate from	(1M tons
		t=0 to t=30 years)	per year)
Initial pressure at Z=100	10.1 MPa	Brine residual	0.025
m		saturation	
Pressure gradient	10 ⁴ Pa/m	CO ₂ residual saturation	0.1
Temperature	47 °C	Capillary pressure	2×10 ⁴ Pa
Horizontal permeability	10 ⁻¹³ m ²	Thickness of	10 m
(storage formation and	(0.1 D)	caprock layers	
formation above caprock)			
Vertical permeability	10 ⁻¹⁴ m ²	Thickness of the	100 m
(storage formation and	(0.01 D)	storage formation	
formation above caprock)			
Horizontal permeability	10 ⁻¹⁹ m ²	Thickness of the	90 m
(caprock)	(10 ⁻⁷ D)	formation above	
Vertical permeability	10 ⁻²⁰ m ²	caprock Salt (NaCl) mass	0.1
(caprock)	(10 ⁻⁸ D)	fraction in brine	0.1
(caprock) Horizontal permeability	(10°D) 10 ⁻¹⁹ m ²	Porosity (storage	
(fractured caprock)	(10 ⁻⁷ D)	formation and	01
Vertical permeability	10 ⁻¹⁷ m ²	formation above	0.1
(fractured caprock)	(10 ⁻⁵ D)	caprock)	
CO ₂ injection period	30 years	Porosity (caprock)	0.05
Post-CO ₂ injection period	100 years	Maximum	130 years
	roo yearo	simulation time	roo yearo
Domain size	10×10 km		Automatic
Boundary condition	Open	Simulation time	adjustment
	boundary	step	(initial step = 100 s)

RESULTS



 CO_2 saturation above the fractured caprock Detection threshold: AS = 0.0025

CO₂ flux through the fractured caprock

